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Themes

I Solutions of optimization models are often observed while the
relevant parameters are not.

I Common examples include problems from network industries such aa
electricity.

I When the data include constraint coe�cients, the inverse
optimization to discover the parameters is only partially identi�ed.

I Identi�cation can be possible through norm minimization.



A Motivating Problem

Economics of Two-Stage Electricity Markets?
(Veit et al 2006; Sioshansi, Oren, O'Neill 2010; Botterud et al 2011)

Market Power In Electricity Markets?
(Cardell, Hitt, Hogan 1996; Jiang, Baldick 2005; Hogan 2012)

Results rely assumptions r.e. participant objectives:

⇒Case Study on Wind Producer Objectives in Midwest ISO

I Two-stages: Day Ahead (DA), Real Time (RT) markets

I Forecast: Wind producers submit a DA production commitment

I Stochastic production: shortfall or surplus made up via RT prices

Wind DA Revenues:

Rev(QDA) =QDA × PDA + (QRT − QDA)× PRT

Economic value of intermittent generation depends on forecast quality
(Gowrisankaran, Reynolds, Samano 2011; Skea, Anderson 2008 ...)



Quick Look at the Data

Midwest ISO 2010 Data:
Forward Premium
E(PDA − PRT ) > $2.00
But Under-commitment!
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Why?

I Bad forecasting?

I Risk aversion?

I Exercise of Market Power?

Prerequisite for answer:
estimate E(∂PDA/∂QDA) and
E(∂PRT/∂QDA)
Hard with standard econometrics due
to endogeneity



Research Problem:

I Ideal solution to endogeneity question:
An accurate model of price determination process

I Zonal prices
uniform price multi-unit auction
(c.f. Reguant 2012; Hortaçsu, Puller 2008; Wolak 2004)

I However, Locational Marginal Pricing dominate North American
Markets
(e.g. PJM, Midwest ISO, CAISO, ERCOT)

I Prices depend on entire network structure
I Network structure not directly observable

Critical Infrastructure Information Act (2002)

I However, Available information:

I Midwest ISO: prices, quantities, bids, active transmission constraints

Can a useful model of the network be inferred from this

information?

(Useful for market researchers, participants, designers of CIIA)



Roadmap

I Locational Marginal Price (LMP) Market: Linear model

I The Estimation Problem... via Inverse Optimization

I An Algorithm: A su�cient explanation

I Application to Data: Midwest ISO



Electricity Dispatch Model

Relaxation of the unit commitment problem:

Market Participant i ∈ {1..N}
I Produces xi MWh at an announced cost

of ci/MWh

Lossless network with links (i , j)

I Transmission between i and j of y(i,j)

MWh

I Topology de�ned by matrices
E , A, and D

I Network Flow Constraints Ey = x
I R Physical Constraints Ay = 0
I L Transmission Constraints Dy ≤ d

min cT x

s.t. Ey = x

Ay = 0

Dy ≤ d

u ≥ x ≥ l

y ≥ 0



Locational Marginal Prices

I De�nition:

1. The Locational Marginal Price (LMP) is the immediate cost of
supplying one additional MW of power at a particular node.

2. The LMP is the shadow price of the �ow constraint

min cT x dual variables

s.t. Ey= x π

Ay = 0 σ

Dy ≤ d ρ

u ≥ x ≥ l α, γ

y ≥ 0



LMP Example

(Louie, Strunz 2008)

C
A
:$20/MWh C

B
:$30/MWh

C
C
:$25/MWh

A B

C

1/3

2/3
≤50

D

Corresponding LP:

min 20xA + 20xB + 20xC

s.t. Ey = x

2yAB − yAC = 0 A constraints

yBC ≤ 50 D constraints



LMP Example

C
A
:$20  x

A
<500 C

B
:$30  x

B
<100 

C
C
:$25    x

C
<500

A B

C

1/3

2/3
≤50

D

x
D
=-300

Corresponding LP:

min 20xA + 20xB + 20xC

s.t. Ey = x

2yAB − yAC = 0 A constraints

yBC ≤ 50 D constraints

0 ≤ xA ≤ 500

0 ≤ xB ≤ 100

0 ≤ xC ≤ 500

−300 ≤ xD ≤ −300
y ≥ 0



LMP Example

A B

C

C
A
:20 x

A
:150 π

A
:20 C

B
:30  x

B
:0  π

B
:15
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C
:25  x
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:150  π

C
:25
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:50

y
AC

:100 y
BC

:50

D

x
D
:-300  π

D
:25

y
CD

:300

Solution:

xA = 150 πA = 20

xB = 0 πB = 15

xC = 150 πC = 25

xD = −300 πD = 25

yAB = 50

yAC = 100

yBC = 50 ρBC = −15
yCD = 300



Estimation Problem (Single Sample)

min cT x dual variables

s.t. Ey = x π

Ay = 0 σ

Dy ≤ d ρ

u ≥ x ≥ l α, γ

y ≥ 0

I Given data:

I c, x , u, l , π, ρ

I Generate a network model: Ē , Ā, D̄, d̄

I Explaining shadow prices π and ρ



General Inverse Optimization
Given:

I a partial speci�cation of
an optimization model

I a (partial) speci�cation of
an optimal solution

Infer missing model parameters
such that:

I Consistency:
Known Parameters
consistent with optimality

I Simplicity:
Missing parameters
minimize a norm

Standard form Zhang, Liu 1996,1999 (linear); Ahuja,

Orlin 2001 (general):

I Feasible set known

I Opt. solution known

I Cost parameters unknown

I Minimize L1 or L∞ norm
Extensions: Yang, Zhang 2007; Ahmed, Guan
2005; Iyengar, Kang 2005; Wang 2009; Ahuja,
Orlin 1998,2002; Cui, Hochbaum 2010

min cT x dual variables

s.t. Ey=x π

Ay= 0 σ

Dy≤ d ρ

u ≥ x≥ l α, γ

y≥ 0



Our Inverse Optimization Problem

Standard form:

I Feasible set known

I Opt. solution known

I Cost parameters unknown

I Minimize L1 norm

Electricity Market Problem:

I Feasible set unknown

I Opt. solution partially known

I Cost parameters known

I Minimize L1 norm

min cT x dual variables

s.t. Ey=x π

Ay= 0 σ

Dy≤ d ρ

u ≥ x≥ l α, γ

y≥ 0

min cT x dual variables

s.t. Ey = x π

Ay = 0 σ

Dy ≤ d ρ

u ≥ x ≥ l α, γ

y ≥ 0



Our Inverse Optimization Problem

I Find a �simplest� Ā,D̄,d̄ ,Ē satisfying optimality conditions

I Minimize 1-Norm

I Regularize Ā s.t. σr = 1

Resulting Optimization Problem:

min ||Ā||1 + ||D̄||1 + ||d̄ ||1∑
r<R

Ār(i,j)+
∑
`<L

D̄`(i,j)ρ(i,j) = πj − πi ∀(i , j) ȳij > 0

Ē ȳ = x

Āȳ = 0

D̄ȳ ≤ d̄

2-Step Algorithm:

1. Find Ē and ȳ :

2. Find Ā, D̄, d̄ :



Step 1: Determine Ē and ȳ

I Assume no loss
Ēk(ij) ∈ {−1, 0, 1}

I limit to �ows between sources

and sinks

Ēi(ij) = 1 only if xi > 0 ,

Ēj(ij) = −1 only if xj < 0,

Ēk(ij) = 0 otherwise

I Minimize requirements on Ā and
D̄ to satisfy∑
r

Ār(i,j) +
∑
`

D̄`(i,j)ρ(i,j) = πj − πi ∀ȳij > 0

I By solving:

min
∑
ij

ȳij ·max{πi − πj , 0}

s.t. Ē ȳ = x

ȳij ≥ 0

A B

C

C
A
:20 x

A
:150 π

A
:20 C

B
:30  x

B
:0  π

B
:15

C
C
:25  x

C
:150  π

C
:25

D

x
D
:-300  π

D
:25



Step 1: Determine Ē and ȳ

I Assume no loss
Ēk(ij) ∈ {−1, 0, 1}

I limit to paths between sources

and sinks

Ēi(ij) = 1 only if xi > 0 ,

Ēj(ij) = −1 only if xj < 0,

Ēk(ij) = 0 otherwise

I Minimize requirements on Ā and
D̄ to satisfy∑
r

Ār(i,j) +
∑
`

D̄`(i,j)ρ(i,j) = πj − πi ∀ȳij > 0

I By solving:

min yij ·max{πi − πj , 0}

s.t. Ē ȳ = x

ȳij ≥ 0

A B

C

C
A
:20 x

A
:150 π

A
:20 C

B
:30  x

B
:0  π

B
:15

C
C
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C
:150  π

C
:25
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D
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D
:25

Y
AD

:150

Y
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:150



Step 2: Determine Ā, D̄, d̄

Minimize sum of 1-norms subject to
optimality constraints
Solving:

min
∑
r,(i,j)

|Ār(ij)|+
∑
r,(i,j)

|D̄`(ij)|+
∑
`

d̄`

s.t. Āȳ = 0∑
r

Ār(i,j) +
∑
`

D̄`(i,j)ρ(i,j) = πj − πi ∀ȳij > 0

d` ≥ 0

A B

C

C
A
:20 x

A
:150 π

A
:20 C

B
:30  x

B
:0  π

B
:15

C
C
:25  x

C
:150  π

C
:25

D

x
D
:-300  π

D
:25

Y
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:150

Y
CD

:150

A and D Constraints:
1
3 ȳAD ≤ 50



Multiple Samples

For set of samples 1..S

1. Calculate ȳ s independently

2. Add constraints for each sample

min
∑
r,(i,j)

|Ār(ij)|+
∑
r,(i,j)

|D̄`(ij)|+
∑
`

d̄`

s.t. Āȳ s = 0 ∀s∑
r

Ār(i,j) +
∑
`

D̄`(i,j)ρ
s
(i,j) = πsj − π

s
i ∀ȳ sij > 0

d̄` ≥ 0

A B
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C
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:20 x

A
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:20 C
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:30  x
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:1  π

B
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C
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C
:25

D

x
D
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D
:25

Y
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Y
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Y
AB

:1

A and D Constraints:
1
3 (ȳAD − 2ȳAB) ≤ 50



General Implementation

I Observations for each day and hour

I x , π, ρ, c vary
I E , D, A, d constant (approximately)

I Transmission and generation outages may change d

I Transmission losses not included

I Original �optimization" may be adjusted for other reasons (e.g.,
frequency, reliability)



Algorithm Observations

I Extension with multiple observations

I Step 1 performed independently
I Step 2 single optimization adding all constraints

I Algorithm feasible if rows in A greater number of samples

I Polynomial approximation

I Step 2: LP standard transformation
I Each step presents O(n2) variables



Results: Application to Midwest ISO

2010/01/01 00:00:00

I 1403 Nodes

I 768 Aggregated
Nodes

I 772 Active Links

I Transmission
bounds per hour

I Imperfect data

I Naive
implementation
20 ARows →
40min

Power Flow in Midwest ISO Network



Additional Examples

I Macro-economic models

I Prices observed in di�erent regions
I Purchase quantities observed
I Equilibrium model set up as potential optimization
I Unknown transportation routes and costs to discover

I Supply chain interactions
I Prices and quantities observed
I Unobserved relationships between suppliers and customers
I Discover relationships and transactions



Future Directions

I Discussed modelling price determination process in LMP based
Electricity Markets

I Inverse optimization based formulation/algorithm consistent with
dual interpretation of LMPs

Next Steps

I Predicting market characteristics: price response, congestion costs...

I Structural estimation: model participant decision making

I Solution quality: solution robustness to data imperfections

I Econometrics of general competitive markets: extend to linear

market models



Conclusions

I Inverse optimization to discover constraints

I Needed to determine objective of market participants
I Many markets include price and quantity observations but not

constraints
I Di�culty from bilinear form with constraint and unknown variable

values

I Solution method
I Two-step process
I Determine consistent primal variables �rst
I Choose constraint coe�cients with minimum 1-norm

I Results
I Possible to discover simple network con�gurations
I Reasonable results with multiple data observations
I Possible inconsistencies from unknown parameter changes


